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Note 

Inverse Relativistic Problem 
for the Bound Quark-Antiquark States 

One gives a formulation of the inverse problem for determining particle mass and potential 
parameters from the experimental bound-state energies. The solution of the straight problems, 
on which the inverse one is based, is reached by the use of the core-spline method. An 
autoregularized iteration process of Gauss-Newton type is applied for the solution of the 
overdetermined nonlinear system of equations, corresponding to the present formulation of the 
inverse problem. The concrete subjects of investigation are the mass and the coupling constant 

. of the charmed quarks, whose boundstates are interpreted as masses of heavy vector mesons. 

INTRODUCTION 

The interpretation of the masses of the experimentally observed heavy vector 
mesons as quark-antiquark bound states makes possible the formulation of the 
inverse problem of determination of the quark mass and other basic parameters of the 
quark-antiquark interaction. For this purpose in the present paper we use the 
relativistic radial equation of the Todorov quasipotential approach [ 11. We employ 
the potential proposed in Ref. [2]. 

Three formulations of the inverse problem are considered: (P,)-based on the 
Schrodinger equation as in Ref. [2]; (PZ) and (PItbased on Eq. [ I] for spin l/2 
relativistic quarks but using different approximations of the dominant interaction. The 
core-spline method [3,4] is used for the solution of the mentioned radial equations 
(straight problems). The overdetermined nonlinear systems of equations with respect 
to the quark mass, m, and the coupling constant, A, taking place in the inverse 
poblem are solved by means of autoregularized processes of Gauss-Newton type [5 1. 

The present paper provides the necessary information about the employed 
computational methods and programs. Further, the values of m and 1 obtained by 
solving the different formulations, (P,k(P,), of the inverse problem of the energies of 
the charmonium bound states are compared. 

1. THE STRAIGHT PROBLEM AND THE CORE-SPLINE METHOD 

The straight problems, corresponding to the inverse problems (I’,)-(P,) can be 
written compactly in the ,form 

d2 2(Z+ 1) d 
dx2+ x x + b,(z, m) - V,(x; z; m, A) 

I 
y(x, Z) = 0, (l-1) 
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co3 [x’+ ‘y(x, z)]’ dx = 1 (0 < x < co), 
J 0 

where index v = 1, 2, 3 corresponds to formulations (PI)-(P3), respectively; 6, = mz, 
b, = b, = (z’ - 4m2)/4; 1= 0, 1,2,... is the orbital quantum number; V, is given 
potential (in case v = 1) or quasipotential (in cases r = 2, 3), depending on the 
particle mass m, on a constant 1 and, generally, on the energy z. 

The general features and the solution of problem (1. l), (1.2) by the core-spline 
method (CSM) is considered in detail in Refs. [3], [4, Sect. 11. Our problem (l.l), 
(1.2) is a particular case of the general one [4, (Ll), (1.2), (1.4~(1.7)]: this is the 
case of equal particle masses m, = m2 = m E M = (0, mJ, mb = constant >O. 
Potential function V, in (1.1) depends only on one parameter A E L = (0, A,), Ab = 
constant >0 and it is constructed by making use of the potential introduced in 
Ref. [2], 

v = c, p*x - [ 1 - 4z_ ,(Ax)]/x}, (1.3) 

where C, = 8x/(33 - 2C,), C, is an integer constant and IL, is a particular case of 
the integrals 

(1.4) 

The core-spline method, when used to obtain approximate solutions of the straight 
problem (l.l), (1.2), consists of the determination of pairs: energy-wave function (see 
[3, P. 925; 4, (1.3)1) 

where X= [x~, xb] c (0, co) and 2 = [za, zb] E R ’ are given finite intervals (x, is 
chosen to be close enough to zero and xb as a large enough number [3, p. 9341; 
&,,o = P(x) P(X, z)l, w h ere s(x) is a quadratic interpolation spline [3, (l.l)-( 1.4)] 
and p(x, z) is a core-function [3, p. 9251. The form of the core-function for equations 
of type (1.1) with potential (1.3) is fixed in Ref. [4, (1.9), (1.12)] 

~(4 z) = exp(--k,(z) ~4) (v = 1,2,3), 

where q = 1.5. The concrete form of function, k,, as well as the length of the energy 
interval 2, depend on the details of the potential function V,. Therefore, one has in 
different formulations of the problem 

(i) in the case v = 1 

V, = mV, k, = A(C, m)“*/q, 2 = (0, al); 
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El = (z’ - 2m2)/(2z), 

(ii) in the case v = 2 

V2 = 2E, V, 

k, = A(2C, E,) 

(iii) in the case v = 3 

V3 = V2 + Cl A* {E, 

‘/*/a Z = (fim, co); 

[l + =,+)I +~*E,Z~(W)/x, 
E = 32 +2m 

2 z(z + 2m) ’ 

2 
E, = 

z(z + 2m)* ’ 
k, = k, 

and interval Z is the same as in the case v = 2. 

According to Theorem 1 [3] the approximate solution of problem (l.l), (1.2) is 
reduced to the solution (with respect to the energy z) of the following nonlinear 
algebraic equation [4, (1.26)] 

f(z; m, A) = 24 + 2 
( 
It1 
- - qxjj-‘k, 

xb ) 

(211,*x, t @) 

t [b” - q(21 t q t 1) x;-*k, - V,(x,) t q2x;‘4--L)k;] 

x (a,$$, t ,8,*x, t 7;) = 0 (v= L&3), (1.5) 

where N> 5 is the number of spline-net intervals; a,*, /I,*, r,* .are the basic-spline 
coefftcients [3, (1.4), (1.8), (l.ll), (1.15), (1.17)]. Quantities a,*,P:, y$, k,., b,. and 
V, depend generally on the variables z, m, A and the number 1. 

The sufficient conditions for applicability of Theorem 1 [3] and, therefore, for 
construction of a basic’ spline in CSM are given in Refs. 13, (1.9), (1.13); 
4, (1.23)-( 1.25)]. Th ese conditions can be checked analytically only in a few cases of 
special potentials and, usually, the question of applicability of Theorem 1 [ 31 is 
solved by numerical experiments. 

2. ON THE CHOICE OF THE RELATIVISTIC QUASIPOTENTIAL FUNCTION 

The choice of the functions V2 and V, is based on the quantum chromodynamics 
at short distances. We assume Lagrangian of quantum chromodynamics to be 
invariant with respect to the SU(3), @ SU(4),, where the indices “c” and “f’ denote 
a colour and a flavour of the quarks, respectively. The potential function v(:(p, 4) is 
extracted from the Born spin l/2 quark-antiquark interaction amplitude for SU(3),- 
singlet initial and final states. 

The potential written in a two-component formalism by means of the Pauli 
matrices has in momentum space the form 
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167~ oS 
&&g)=-- 

3 (P-4)* 
[2z2 - 4m2 - (p-g)*] 

167~ 
+Ta (P - 4T ___- 

(z+2m)* 1 
. 32~ a, 

-z3(p-g)* 
lf-- 

z +Z2m (p-4)2 [(P*4)0, + (P”4)021 (z + 2my 1 
_ (P * 4)j(P * 4)j( 

(P - 4Y 

4 
+ (z + 2m)* ’ 

(@ * 4)j(P * Q)j’ 
(P - d2 I 

u,ju2j,, i=v/-1, (2.1) 

where p = pi (=--p2) and 4 = 4, (= -4J are the momenta of the initial and, respec- 
tively, final particles in the center-of-mass frame, z is the total center-of-mass energy 
clj and ~2j’ are two sets of Pauli matrices, commuting one with the other and 

as= 33-2C, 
1% [ln (‘“;Lz)‘)]-‘; (2.2 ) 

where 1 is a scale parameter. 
Formula (2.2) takes into account the vacuum polarization effects and it is the 

solution of the renormalization group equation at the large space-like momentum 
transfers. 

In order to account for the nonperturbative effects at short distances instead of 
formula (2.2) we shall make use of the expression proposed in Ref. [2]: 

127c 
as = 33 - 2c, [ ( 

In 1 + (’ :*‘)*)I -ia 

Formula (2.3) simultaneously satisfies the requirements for asymptotic freedom at 
short distances and linear increase of the strength of the interaction at large distances. 

In the case v = 2 (the formulation of the problem (P2)) we use only the first term in 
the right-hand side of (2.1) (the Coulomb term). Then Eq. (1.1) differs from the 
nonrelativistic &h&linger equation for spinless quarks (the case v = 1) only by the 
functions b, and V, depending on z. 

In the case v = 3 (the formulation (P3)) we use all the diagonal terms in the right- 
hand side of (2.1), i.e., the first four terms. The conjecture is that the spin-orbit and 
spin-spin interaction terms ‘in the right-hand side of (2.1) do not contribute substan- 
tially. 

The functions V, (v = 2,3) in the co-ordinate space are obtained from the approx- 
imations for p(‘(p, 4) (see formula (2.1)) by a Fourier transformation. The integration 
is carried out by making use of a spectral representation of the integrands. In the 
present work we choose C, = 3. 
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3. INVERSE PROBLEM 

Let a point P* = (z*, m *, A*) E Z x A4 x L that satisfies Eq. (1.5) be given. The 
derivatives af(z, m, A)/&, where r = z, m, A have the form 

af 2 aa,* 
ar= ar 

- - 2qx4,- 1 

)( 

aa,* a/3: 
--qx;-‘ku 2ar~b+F 

8V 
+ J$kg(2f+q+ qxl’2-* 

X=Xb 

+ 2q2X;‘q-1’k, %$L 1 (a,*xi + %xb + YN*> 

+ [b, - @l+ q + 1) x:-2k, - v&,) 

+ q2eq- l)k2 “] (+;+zxb+$$), V= 1,2,3. 

Let, also, the derivative i?f/lar be continuous at the point P* and the following 
inequality holds: 

(3.1) 

Then the theorem about implicit function in the neighbourhood of the point P* 
implies the existence of a differentiable function 

z = z(m, A) (3.2) 

with partial derivatives 

The existence of the implicit function (3.2) gives the possibility of considering the 
inverse problem of numerical determination of the parameters m and I of the 
quark-antiquark system. For this purpose, suppose that the vector of the measured 
energies 

2 = K,,o.o, . . . . &,,,m z;,o,..., &+,I), z;*,o,..., z;*,,u*,)’ E RS, 
s=p’O’+p(l) + . . . +p(“), I* = const. > 0, 

581/45/2-10 
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is given, and its components Z;,,,, , E Z are labeled by two indices: the orbital 
quantum number I and the corresponding radial numbers p(“. Suppose further that 
the implicit function (3.2) determines a corresponding vector 

z(v) = (q,,,W,..., zo,,dv/),..., zp,o,..., +,,,d= E R”, 

I//=(~,A)=ER~, 

whose components are the energies z ,,&(,, E Z approximately computed by the core- 
spline method. Note that the core-spline method holds under conditions that provide 
a considerably smaller error of the components of the vector z with respect to the 
error of the components of the measured vector 2. 

The minimization of the functional x’(w) = ]I w(z(v) - Z)]]:, where w is a given 
diagonal weighing matrix of the order s, leads to the solution of a (z’(v)w)‘-averaged 
equation [ 71 

@(I//) = (z’(y))’ w’(z(ty) - 2) = 0 (3.3) 

with respect to the vector v. The symbol z’(v) in Eq. (3.3) stands for the Jacobi 
matrix of the vector z(w) 

azo 0 2 ..a 
am 

azo 0 ( . . . 
aA 

a+,rroe, 
am 

a+,,cr, 
aA I 

The system of two equations (3.3) for the two unknowns m and A is considered as 
the inverse quark-antiquark bound states problem. In order to solve this problem, the 
present paper uses the autoregularized iteration process of Gauss-Newton type 

w n+ I = Wn - ((z’(~n))= w2z’(w,) + %JRJ -’ @(w,>, 

yn EMx L, n=O, l,..., n*, (3.4) 

where IRS is unit matrix of order s. The autoregularizer E, has the form [9] 

E, = [(r: + 4cP,y2 - t,]/2, 

7” = Il(z’(yln))= w*~‘wlm~ P, = II Ww,>ll, 3 
c = &0(&O + 7oYPo 9 co = const. > 0. 

Practically, the components of the vector z(v) are generated by the program 
SPSOL [4,8], while the iteration process (3.4) is executed by the standard program 
COMPIL (Program Library of JINR, Dubna; program No. C-401). The latter one is 
based on the basic program REGN [9]. (New version: PSR-165jREGN, ORNL- 
RSIC-3 1.) 
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4. SOLWON OF THE INVERSE PROBLEM FORTHE 
CHARMONIUM BOUND STATES 

In order to solve problem (3.3) we consider the measured vector to be the seven- 
component vector 

which is obtained from the vector M of measured masses (in GeV) of the bound 
states of the quark-antiquark [6] 

us+? = ((3.098),,, , (3.684)0,, , (4.028),,,2, (4.414),,, , 

(3.522),,,, (3.772),,,, (4.16)2,,)T. 

The components of both vectors are connected by the relations 
. 
z/,rln - - 4,,,,, - 2m, for v= 1, 
- 
Zl,yvl = G4,~cn)1’*~ for v = 2, 3. 

(4.1) 

The problems (Pi)+,) were solved in two steps, 

(a) With a unit weighing matrix w = ZR s; 
(b) With w = diag(]z,,,(v,*) - F0,0)-“2,..., jz2,i(~,,*) - Z;,,]-“2), where vn* is 

a n*-pseudo-soution [7], found by the iteration process (3.4) in step (a). The second 
step, (b), consists of the application of the LCH-procedure [lo]. 

The iteration process applied to all variants of problem (3.3) is cut off at the 
number n* for which the inequality 

is satisfied. 

p,* < lo-” (4.3) 

In order to compute the energies z,+(~) the subroutine SPSOL [8] that realizes the 
core-spline method for all problems (1. I), (1.2) is called by the subroutine RELADI 
[9]. The program SPSOL was used in all cases at equal values of the parameters: 
N= 400, X= [lo-‘, lo]. Such a regime provides an accuracy (AZ),,, = 7.4 x lO-6 
of the computed energies (see [4, (2.8)]) of the order higher than the accuracy of the 
vector t components of the measured energies. The integrals (1.4) were computed by 
means of the Gauss four-point formula. The iteration process was realized by a 
numerical approximation of the Jacobi matrix (see [9, p. 171). An alternative of the 
numerical differentiation is the use of formulae for the derivatives az/am and az/& 
which are guaranteed by the implicit function theorem (see Section 3). 

The results from the two steps (a) and (b) of the procedure of solving the inverse 
problems (Pi)-(PX) are listed in Table I. In the same table are also listed the values of 
the statistical criterion x’(v,.)/(s - 2) corresponding to the solution of the problems 



298 ALEKSANDROV ET AL. 

TABLE I 

Quark Mass and Coupling Constant Obtained at Both Steps of Solution of the Inverse Problem 

v=l v=2 v=3 
Results of 
Ref. 12 1 

Step (a) m (GeV) 1.50432 f 0.013 1.57943 + 0.018 1.56547 f 0.022 1.49 1 
A (GeV) 0.38462 f 0.0064 0.31841 zt 0.0071 0.31961 f 0.0081 0.398 

Step @I m (GeV) 1.49976 f 0.0056 1.59033 f 0.0089 1.58848 f 0.0155 
I (GeV) 0.38726 f 0.0024 0.31505 f 0.0034 0.31246 f 0.0053 

x’(w,*) 1.1005174 1.0362254 0.974156 
s-2 

(P,)-(P,) at step (b). This criterion allows comparison of the abilities of the three 
formulations (V = 1,2,3) to describe the quark-antiquark system on the basis of 
Eq. (1.1). The best formulation corresponds to such value of the quantity 
x’(v,*)/(s - 2) which is closer to unity. 

The results in Table I first of all indicate an advantage in the relativistic equations 
(1.1) (v = 2, 3) with respect to the Schrodinger equation. Particularly, it is clear that 
the relativistic equation (1.1) with a more complete quasipotential V3 has an 
advantage with respect to Eq. (1.1) with “Coulomb” quasipotential I’,. 

The approach chosen to formulate and solve inverse problem (3.3), the latter being 
obtained by consideration of an overdetermined system of equations (consisting of 
seven equations for two unknown quantities), allows estimation of the inherited errors 
of the unknown quantities m and A. For this purpose the matrix 
Kz’(w,*))’ Mw,*)l -I which appeared to be well-conditioned, was used as the 
Fischer information matrix. The errors listed in Table I are extracted from this 

TABLE II 

Charmonium Masses .u,.~ (in GeV) Calculated by the 
Values of m and 1, Obtained from the Inverse Problem 

1 P v= 1 v=2 v=3 

0 0 
1 
2 
3 
4* 
5* 

1 0 

2 0 
1 
2* 
3* 

3.0989 
3.6696 
4.0675 
4.4143 
4.8060 
5.3177 

3.5056 

3.7816 
4.1420 
4.4679 
4.8395 

3.1868 3.2175 
3.6428 3.65 77 
4.0467 4.05 17 
4.4233 4.4210 
4.7915 4.7852 
5.1804 5.1733 

3.5062 3.5116 

3.7732 3.7707 
4.1524 4.1438 
4.5136 4.5000 
4.8715 4.8552 
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matrix. We note that the breaking of the iteration process (3.4) according to criterion 
(4.3) promotes more plausible application of the linear theory of the inherited errors 
in the considered nonlinear case. 

Finally, the results in Table I indicate the presence of a clearly demonstrated 
relativistic effect, even for such relatively heavy quarks as the charmed quarks. The 
relativistic value of the quark mass is -4% larger than the classical one and the 
relativistic value of the quantity A is -16 % smaller than the value of the classical 
charmonium treatment. 

The charmonium masses d,,,,, computed by the CSM (function (3.2) and 
formulae (4. I), (4.2) are used) and corresponding to the solution I&’ (V = 1,2,3) 
obtained at step (b) (Table I), are listed in Table II. The predicted values of the 
masses are noted by the symbol (*). 
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